Diabetes is an endocrine disorder that affects the way your pancreas produces insulin and later glucose distribution. Diabetes is a chronic condition involving issues regulating blood sugar (glucose). When glucose levels are too high, you may be at risk of developing problems with your kidneys, heart, and other parts of your body.

https://www.healthline.com/health/is-diabetes-an-endocrine-disorder

Cherney, Kristeen. (2024, October 3). Is Diabetes Considered an Endocrine Disorder? Healthline.

A groundbreaking gene therapy treatment has shown remarkable success in improving vision for patients with Leber congenital amaurosis (LCA1), a rare inherited condition that causes severe vision loss. The therapy, which targets a specific genetic mutation, has resulted in significant improvements in vision for some patients.

https://www.vanguardngr.com/2024/09/gene-therapy-offers-hope-for-patients-with-rare-vision-loss/

Ogundipe, Sola. (2024, September 29). Gene therapy offers hope for patients with rare vision loss. Vanguard.

Quality measures are a tool to drive healthcare toward value-based care, and in diabetes care these measures can improve diabetes management and prevent downstream conditions, such as cardiovascular disease. However, there are multiple hurdles that healthcare organizations face when implementing quality measures for diabetes care, explained Sean M. Oser, M.D., M.P.H., associate professor in the Department of Family Medicine at the University of Colorado School of Medicine, in a Managed Healthcare Executive K-Cast video series.

https://www.managedhealthcareexecutive.com/view/diabetes-quality-measures-have-challenges-but-also-successes

MHE Staff (2024, October 3). Diabetes Quality Measures Have Challenges But Also Successes. Managed Healthcare Executive.

Diseases that affect the retina, the light-sensitive layer at the back of the eye, are a significant cause of visual impairment and blindness. Gene therapy holds promise for treating some of these conditions, and current research advances may soon shift the therapeutic landscape for eye health. However, many obstacles remain in place, as this Special Feature discusses.

Read more

GLP-1 drugs protect brain health by improving neurovascular function and reducing inflammation

MANF (mesencephalic-astrocyte-derived neurotrophic factor) is believed to have broad potential because it is a naturally-occurring protein produced by the body for the purpose of reducing and preventing apoptosis (cell death) in response to injury or disease, via the unfolded protein response. By manufacturing MANF and administering it to the body, Amarantus is seeking to use a regenerative medicine approach to assist the body with higher quantities of MANF when needed. Amarantus is the front-runner and primary holder of intellectual property (IP) around MANF, and is initially focusing on the development of MANF-based protein therapeutics.

Learn more

Publication: Nature.com | Publication Date: October 31, 2019

Authors: Kadri Seppa, Maarja Toots, Riin Reimets, Toomas Jagomäe, Tuuliki Koppel, Maia Pallase, Stine Hasselholt, Maiken Krogsbæk Mikkelsen, Jens Randel Nyengaard, Eero Vasar, Anton Terasmaa & Mario Plaas

Abstract

Wolfram syndrome (WS) is a rare neurodegenerative disorder that is mainly characterized by diabetes mellitus, optic nerve atrophy, deafness, and progressive brainstem degeneration. Treatment with GLP-1 receptor agonists has shown a promising anti-diabetic effect in WS treatment in both animal models and in human patients. Since previous research has tended to focus on investigation of the WS first symptom, diabetes mellitus, the aim of the present study was to examine liraglutide effect on WS-associated neurodegeneration. We took 9-month-old Wfs1 knock-out (KO) animals that already had developed glucose intolerance and treated them with liraglutide for 6 months. Our research results indicate that 6-month liraglutide treatment reduced neuroinflammation and ameliorated endoplasmic reticulum (ER) stress in the inferior olive of the aged WS rat model. Liraglutide treatment also protected retinal ganglion cells from cell death and optic nerve axons from degeneration. According to this, the results of the present study provide novel insight that GLP-1 receptor agonist liraglutide has a neuroprotective effect in the WS rat model.

Read the entire publication article here.

Publication: ScienceDirect | Publication Date: October 2019

Authors: Damien Abreu, Fumihiko Urano

Wolfram syndrome is a rare genetic spectrum disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration, and ranges from mild to severe clinical symptoms. There is currently no treatment to delay, halt, or reverse the progression of Wolfram syndrome, raising the urgency for innovative therapeutics for this disease. Here, we summarize our vision for developing novel treatment strategies and achieving a cure for Wolfram-syndrome-spectrum disorder.

Read the entire publication article here.

Publication: Hindawi.com | Publication Date: 2018

Authors: N. B. Toppings, J. M. McMillan, P. Y. B. Au, O. Suchowersky and L. E. Donovan

Abstract

Background. Classical Wolfram syndrome (WS) is a rare autosomal recessive disorder caused by mutations in WFS1, a gene implicated in endoplasmic reticulum (ER) and mitochondrial function. WS is characterized by insulin-requiring diabetes mellitus and optic atrophy. A constellation of other features contributes to the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). This review seeks to raise awareness of this rare form of diabetes so that individuals with WS are identified and provided with appropriate care. Case. We describe a woman without risk factors for gestational or type 2 diabetes who presented with gestational diabetes (GDM) at the age of 39 years during her first and only pregnancy. Although she had optic atrophy since the age of 10 years, WS was not considered as her diagnosis until she presented with GDM. Biallelic mutations in WFS1 were identified, supporting a diagnosis of classical WS. Conclusions. The distinct natural history, complications, and differences in management reinforce the importance of distinguishing WS from other forms of diabetes. Recent advances in the genetics and pathophysiology of WS have led to promising new therapeutic considerations that may preserve β-cell function and slow progressive neurological decline. Insight into the pathophysiology of WS may also inform strategies for β-cell preservation for individuals with type 1 and 2 diabetes.

Read the entire publication article here.